Ask Weber

Topic 17
Cellular Respiration

Cellular Respiration

Metabolic Definitions

Explain the difference between catabolism and anabolism in terms of molecular formation/breakdown and use of energy

- -Think of 'anabolic steroids'
 - i.e. what the body builders use to get BIG

Respiratory biochemistry

Where does glycolysis occur and what is its function?

- -Cell cytoplasms
- -Glycolysis is the lysis

 'breakdown' of glyco

 (glucose) it is the first

 step for any respiration,

 but this process itself is

 catabolic and produces

 energy

What are the products of glycolysis?

- -2 x pyruvate
- -ATP (net 2 gain)
- -NADH
- -H2O

Respiratory biochemistry

How does your body determine if it should undertake anaerobic or aerobic respiration after glycolysis?

- Your body assess if there is enough oxygen for aerobic respiration (e.g. if there is ENOUGH in a situation of increased demand)
- You will tend to see this happening if you reduce supply or increase demand

What does anaerobic respiration produce, and how does your body deal with it?

- Lactic acid this can cause your body to become more acidic (part of the reason why you would also breathe faster – to remove acidic CO2)
- Metabolised by the liver to form pyruvate again

Aerobic respiration biochemistry

What are the steps of aerobic respiration

- 1. Glycolysis 'preparation of glucose'
- Acetyl-CoA formation –
 occurs as pyruvate moves
 into the mitochondria
- Citric acid cycle –
 Formation of (some) ATP,
 but produces the H+ and
 e- carriers (FADH2, NADH)
- 4. Electron transport chain

Electron Transport Chain

Describe the function of the complexes within the electron transport chain

- Complex 1 breakdown of NADH (produces 2e - and H+)
- Complex 2 breakdown of FADH2 (produces 2e - and 2H+)
- 3. Complex 3 and 4 uses e to drive H+ into intermembrane space
- 4. Complex 4 Removes H+ in inner mitochondrial compartment through water formation (to maintain a H+ gradient)
- 5. ATP -synthase forms ATP through coupling reaction with H+ gradient movement (oxidative phosphorylation)
- 6. Carrier molecules transports ATP out in return for ADP + P -

